On Semipositivity of Sheaves of Differential Operators and the Degree of a Unipolar Q-fano Variety

نویسنده

  • Z Ran
چکیده

Recall that a Q-Fano variety is by definition a normal projective variety X such that the anticanonical divisor class −K = −K X is Q-Cartier and ample. For such X we define the (Weil) index i = i(X) to be the largest integer such that K X /i exists as a Weil divisor (see [R] for a discussion of Weil divisors and reflexive sheaves, and also Lemma 2 below; NB i differs from the (industry-standard) Cartier index) , the divisor class group N (X) to be the group of Weil divisors modulo rational equivalence, and the Picard number ρ = ρ(X) to be the rank of N (X). When ρ = 1, X is said to be unipolar; note that in this case the singularities of X are automatically Q-factorial. The purpose of this paper is to prove the following theorem over C: Theorem 0. Let X be an n-dimensional unipolar Q-Fano variety of index i. Then (i) if X has log-terminal singularities, we have (0.1) (−K X) n ≤ (max(in, n + 1)) n ; (ii) if the tangent sheaf T X = (Ω X) * is semistable (with respect to −K X) (sin-gularities only assumed normal), we have

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Connectedness of Log Q-fano Varieties

Let X be a log Q-Fano variety, i.e, there exists an effective Q-divisor D such that (X,D) is Kawamata log terminal (klt) and −(KX + D) is nef and big. By a result of Miyaoka-Mori [15], X is uniruled. The conjecture ([10], [16]) predicts that X is rationally connected. In this paper, apply the theory of weak (semi) positivity of (log) relative dualizing sheaves f∗(KX/Y + ∆) (which has been devel...

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

Hyperplane Sections and Derived Categories

We give a generalization of the theorem of Bondal and Orlov about the derived categories of coherent sheaves on intersections of quadrics revealing its relation to projective duality. As an application we describe the derived categories of coherent sheaves on Fano 3-folds of index 1 and degrees 12, 16 and 18.

متن کامل

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Rough approximation operators based on quantale-valued fuzzy generalized neighborhood systems

Let $L$ be an integral and commutative quantale. In this paper, by fuzzifying the notion of generalized neighborhood systems, the notion of $L$-fuzzy generalized neighborhoodsystem is introduced and then a pair of lower and upperapproximation operators based on it are defined and discussed. It is proved that these approximation operators include generalized neighborhood system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999